Skip to main content Contents
Prev Up Next \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.6 Partial Fractions (TI6)
Learning Outcomes
Subsection 5.6.1 Activities
Activity 5.6.1 .
Consider \(\displaystyle \int \frac{x^2+x+1}{x^3+x} \,dx\text{.}\) Which substitution would you choose to evaluate this integral?
\(\displaystyle u=x^3\)
\(\displaystyle u=x^3+x\)
\(\displaystyle u=x^2+x+1\)
Substitution is not effective
Activity 5.6.2 .
Using the method of substitution, which of these is equal to \(\displaystyle\int \frac{5}{x+7} dx\text{?}\)
\(\displaystyle 5\ln|x+7| +C\)
\(\displaystyle \frac{5}{7}\ln|x+7| +C\)
\(\displaystyle 5\ln|x|+5\ln|7|+C\)
\(\displaystyle \frac{5}{7}\ln|x|+C\)
Activity 5.6.4 .
Which of the following is equal to \(\displaystyle\frac{1}{x}+\frac{1}{x^2+1}\text{?}\)
\(\displaystyle \frac{2x}{x^2+x+1}\)
\(\displaystyle \frac{x^3+x}{x^2+x+1}\)
\(\displaystyle \frac{2x}{x^3+x}\)
\(\displaystyle \frac{x^2+x+1}{x^3+x}\)
Activity 5.6.5 .
Based on the previous activities, which of these is equal to \(\displaystyle\int \frac{x^2+x+1}{x^3+x} dx\text{?}\)
\(\displaystyle \ln|x|+\arctan(x)+C\)
\(\displaystyle \ln|x^2+x+1|+C\)
\(\displaystyle \ln|x^3+x|+C\)
\(\displaystyle \arctan(x^3+x)+C\)
Activity 5.6.6 .
Suppose we know
\begin{equation*}
\frac{10x-11}{x^2+x-2}=\frac{7}{x-1}+\frac{3}{x+2}\text{.}
\end{equation*}
Which of these is equal to \(\displaystyle \int\frac{10x-11}{x^2+x-2}\, dx\text{?}\)
\(\displaystyle 7\ln|x-1|+3\arctan(x+2)+C\)
\(\displaystyle 7\ln|x-1|+3\ln|x+2|+C\)
\(\displaystyle 7\arctan(x-1)+3\arctan(x+2)+C\)
\(\displaystyle 7\arctan(x-1)+3\ln|x+2|+C\)
Fact 5.6.8 . Partial Fraction Decomposition.
Let \(\displaystyle \frac{p(x)}{q(x)}\) be a rational function, where the degree of \(p\) is less than the degree of \(q\text{.}\)
Linear Terms: Let \((x-a)^n\) divide \(q(x)\text{.}\) Then the decomposition of \(\frac{p(x)}{q(x)}\) will contain the terms
\begin{equation*}
\frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + \cdots +\frac{A_n}{(x-a)^n}\text{.}
\end{equation*}
Quadratic Terms: Let \((x^2+bx+c)^n\) divide \(q(x)\text{,}\) where \(x^2+bx+c\) is irreducible. Then the decomposition of \(\dfrac{p(x)}{q(x)}\) will contain the terms
\begin{equation*}
\frac{B_1x+C_1}{x^2+bx+c}+\frac{B_2x+C_2}{(x^2+bx+c)^2}+\cdots+\frac{B_nx+C_n}{(x^2+bx+c)^n}\text{.}
\end{equation*}
Example 5.6.9 .
Following is an example of a rather involved partial fraction decomposition.
\begin{align*}
&\frac{7 \, x^{6} - 4 \, x^{5} + 41 \, x^{4} - 20 \, x^{3} + 24 \, x^{2} + 11 \, x + 16}{x(x-1)^2(x^2+4)^2}\\
=& \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}+\frac{Dx+E}{x^2+4}+\frac{Fx+G}{(x^2+4)^2}
\end{align*}
Using some algebra, it’s possible to find values for \(A\) through \(G\) to determine
\begin{align*}
&\frac{7 \, x^{6} - 4 \, x^{5} + 41 \, x^{4} - 20 \, x^{3} + 24 \, x^{2} + 11 \, x + 16}{x(x-1)^2(x^2+4)^2}\\
=& \frac{1}{x}+\frac{2}{x-1}+\frac{3}{(x-1)^2}+\frac{4x+5}{x^2+4}+\frac{6x+7}{(x^2+4)^2}\text{.}
\end{align*}
Activity 5.6.10 .
Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}\text{?}\)
\(\displaystyle \frac{A}{x}+\frac{B}{x+5}\)
\(\displaystyle \frac{A}{x^3}+\frac{B}{x+5}\)
\(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\)
\(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{Dx+E}{x+5}\)
Activity 5.6.11 .
Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^2+1}{(x-3)^2(x^2+4)^2}\text{?}\)
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{D}{(x^2+4)^2}\)
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{(x^2+4)^2}\)
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{Dx+E}{(x^2+4)^2}\)
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{x^2+4}+\frac{Ex+F}{(x^2+4)^2}\)
Activity 5.6.12 .
Consider that the partial decomposition of \(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}\) is
\begin{equation*}
\displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}.
\end{equation*}
What equality do we obtain if we multiply both sides of the above equation by \((x+1)^2x\text{?}\)
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)^2\)
\(\displaystyle x^2+5x+3=A(x+1)+B(x+1)^2+Cx\)
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)\)
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx^2+C(x+1)^2\)
Activity 5.6.13 .
Use your choice in
Activity 5.6.12 (which must hold for any
\(x\) value) to answer the following.
(a)
By substituting \(x=0\) into the equation, we may find:
\(\displaystyle A=1\)
\(\displaystyle B=-2\)
\(\displaystyle C=3\)
(b)
By substituting \(x=-1\) into the equation, we may find:
\(\displaystyle A=-4\)
\(\displaystyle B=1\)
\(\displaystyle C=5\)
Activity 5.6.14 .
\begin{equation*}
\unknown x^2+\unknown x=Ax^2+Ax\text{.}
\end{equation*}
What value of \(A\) satisfies this equation?
\(\displaystyle -2\)
\(\displaystyle 3\)
\(\displaystyle 4\)
\(\displaystyle -5\)
Activity 5.6.15 .
By using the form of the decomposition
\(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}\) and the coefficients found in
Activity 5.6.13 and
Activity 5.6.14 , evaluate
\(\displaystyle \int \frac{x^2+5x+3}{(x+1)^2x} dx\text{.}\)
Activity 5.6.16 .
Given that \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}=\frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\) do the following to find \(A, B, C\text{,}\) and \(D\text{.}\)
(a)
Eliminate the fractions to obtain
\begin{equation*}
x^3-7x^2-7x+15=A(\unknown)(\unknown)+B(\unknown)(\unknown)+C(\unknown)+D(\unknown)\text{.}
\end{equation*}
(b)
Plug in an \(x\) value that lets you find the value of \(C\text{.}\)
(c)
Plug in an \(x\) value that lets you find the value of \(D\text{.}\)
(d)
Use other algebra techniques to find the values of \(A\) and \(B\text{.}\)
Activity 5.6.17 .
Given your choice in
Activity 5.6.16 Find
\(\displaystyle\int \frac{x^3-7x^2-7x+15}{x^3(x+5)} dx.\)
Activity 5.6.18 .
Consider the rational expression \(\displaystyle\frac{2x^3+2x+4}{x^4+2x^3+4x^2}.\) Which of the following is the partial fraction decomposition of this rational expression?
\(\displaystyle \frac{1}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\)
\(\displaystyle \frac{2}{x}+\frac{0}{x^2}+\frac{-1}{x^2+2x+4}\)
\(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{-1}{x^2+2x+4}\)
\(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\)
Activity 5.6.19 .
Given your choice in
Activity 5.6.18 Find
\(\displaystyle\int \frac{2x^3+2x+4}{x^4+2x^3+4x^2} dx\text{.}\)
Activity 5.6.20 .
Given that \(\displaystyle \frac{2x+5}{x^2+3x+2}=\frac{-1}{x+2}+\frac{3}{x+1}\text{,}\) find \(\displaystyle\int_0^3 \frac{2x+5}{x^2+3x+2} dx\text{.}\)
Activity 5.6.21 .
Evaluate \(\displaystyle \int \frac{4x^2-3x+1}{(2x+1)(x+2)(x-3)}dx\text{.}\)
Subsection 5.6.2 Videos
Figure 111. Video: I can integrate functions using the method of partial fractions
Subsection 5.6.3 Exercises